LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – PHYSICS SECOND SEMESTER – APRIL 2010

PH 2811 / 2808 - QUANTUM MECHANICS

Date & Time: 19/04/2010 / 1:00 - 4:00 Dept. No.

$Part - A (10 \times 2 = 20 Marks)$

(Answer all questions)

- 1. If [X, Y] = 1, find $[X, Y^2]$.
- 2. Show that commuting operators have simultaneous eigen functions.
- 3. Express position and momentum operators of a linear harmonic oscillator in terms of the operators 'a' and 'a[†]'
- 4. What are the eigen values of the parity operator? Show that the parity operator can have only two eigen
- 5. Express angular momentum operator \hat{L}^2 in terms of \hat{r} and \hat{p} , where \hat{r} is position operator and \hat{p} is the momentum operator.
- 6. If $|\alpha_1\rangle = \begin{bmatrix} \cos\theta \\ -\sin\theta \end{bmatrix}$ and $|\alpha_2\rangle = \begin{bmatrix} \sin\theta \\ \cos\theta \end{bmatrix}$ show that $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_1\rangle = \delta_{ij}$ and $|\alpha_2\rangle = \delta_{ij}$ and $|\alpha_2\rangle$
- 8. Show that $e^{i(\sigma,n)\theta/2} = \cos\left(\frac{\theta}{2}\right) + i(\sigma,n)\sin\left(\frac{\theta}{2}\right)$
- 9. What is the first order correction to energy in the case of time independent perturbation for a nondegenerate energy level?
- 10. What is the usefulness of variation method? On what assumption is it based?

Part - B (4 x 7.5 = 30 Marks)

(Answer any four questions)

- 11. Obtain Heisenberg's uncertainty relation, using commutation bracket algebra.
- 12. a. If p and q are momentum and position operators and a = [$\lambda q + i(\frac{p}{\lambda} + \mu q)]/\sqrt{2\hbar}$, where λ and μ are real, estimate $[a, a^{\dagger}]$. (5)

b. If $a|n> = \sqrt{n} |n-1>$ and $a^{\dagger} a|n> = n |n>$, find the action of a^{\dagger} on |n> (2.5)

13. a. The base vectors of a representation are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Construct the transformation matrix 'U'

for transforming these vectors in to another representation having base vectors $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\4\end{bmatrix}$ and $\frac{1}{\sqrt{2}}\begin{bmatrix}-1\\4\end{bmatrix}$ (5)

b.If an operator A = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ in the first representation, what is its form in the second one? (2.5) 14. Show that $e^{i\sigma_{x}\pi/2}\sigma_{y}e^{-i\sigma_{x}\pi/2} = -\sigma_{y}$, where $\sigma_{x} \& \sigma_{y}$ are Pauli's spin matrices (4)

Show that for Pauli's spin matrices, $\sigma_i \sigma_i + \sigma_j \sigma_i = 2\delta_{ii}$ (3.5)

15. Obtain the first order perturbation equation and the corrected wave functions of the system.

$$Part - C (4 \times 12.5 = 50 \text{ Marks})$$

(Answer any four questions)

- 16. Obtain Newton's second law of motion from Ehrenfest's theorem.
- 17. Find the transmission coefficient of a particle moving along the x-axis encountering a potential barrier of breadth 'a' and height V_0 , if the energy of the particle $E < V_0$
- 18. Define time reversal operator \hat{T} . How does it affect the Hamiltonian of a system? What is its effect on the commutator $[x, p_x]$ and how does the Schrodinger wave equation transform under time reversal? Find the norm of \hat{T}
- 19. Obtain the matrix representation of operators J^2 , J_x , J_y , J_z , J_+ $_{\infty}J_-$ for a particle with j =1

2	